Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 2 - Limits - 2.4 Infinite Limits - 2.4 Exercises - Page 86: 17

Answer

$a-\lim_{x\rightarrow 2^+}\frac{1}{x-2}=\infty \\ b-\lim_{x\rightarrow 2^-}\frac{1}{x-2}=-\infty \\ c-\lim_{x\rightarrow 2}\frac{1}{x-2} \,does\,not\,exist \\ as\,\\ \lim_{x\rightarrow 2^+}\frac{1}{x-2}\neq \lim_{x\rightarrow 2^-}\frac{1}{x-2}$

Work Step by Step

$\lim_{x\rightarrow 2^+}\frac{1}{x-2}=\infty \\ (as\,x\,approach\,2\,from\,right\,\,\,(x-2)\,is\,positive\,and\,approach\,0)\\ \lim_{x\rightarrow 2^-}\frac{1}{x-2}=-\infty \\ (as\,x\,approach\,2\,from\,left\,\,\,(x-2)\,is\,negative\,and\,approach\,\,0)\\ \lim_{x\rightarrow 2}\frac{1}{x-2} \,does\,not\,exist \\ as \lim_{x\rightarrow 2^+}\frac{1}{x-2}\neq \lim_{x\rightarrow 2^-}\frac{1}{x-2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.