Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 2 - Limits - 2.4 Infinite Limits - 2.4 Exercises - Page 86: 10

Answer

$ a.\quad\infty$. $ b.\quad-\infty$. $ c.\quad$does not exist. $ d.\quad-\infty$. $ e.\quad-\infty$. $ f.\quad -\infty$.

Work Step by Step

$ a.\quad$ Nearing $x=2$ from the left, the graph rises without bound. $\displaystyle \lim_{x\rightarrow 2^{-}}f(x)=\infty$. $ b.\quad$ Nearing $x=2$ from the right, the graph falls without bound. $\displaystyle \lim_{x\rightarrow 2^{+}}f(x)=-\infty$. $ c.\quad$ Neither one-sided limit exists, one is $+\infty$, the other $-\infty.$ We write: $\displaystyle \lim_{x\rightarrow 2}f(x)$ does not exist. $ d.\quad$ Nearing $x=4$ from the left, the graph falls without bound. $\displaystyle \lim_{x\rightarrow 4^{-}}f(x)=-\infty$. $ e.\quad$ Nearing $x=4$ from the right, the graph falls without bound. $\displaystyle \lim_{x\rightarrow 4^{+}}f(x)=-\infty$. $ f.\quad$ Neither one-sided limit exists, but both are $-\infty.$ We write: $\displaystyle \lim_{x\rightarrow 4}f(x)=-\infty$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.