Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 2 - Limits - 2.4 Infinite Limits - 2.4 Exercises - Page 86: 18

Answer

$a-\lim_{x\rightarrow 3^+}\frac{2}{(x-3)^3}=\infty \\ b-\lim_{x\rightarrow 3^-}\frac{2}{(x-3)^3}=-\infty \\ c-\lim_{x\rightarrow 3}\frac{2}{(x-3)^3} \,does\,not\,exist \\ as \lim_{x\rightarrow 3^+}\frac{2}{(x-3)^3}\neq \lim_{x\rightarrow 3^-}\frac{2}{(x-3)^3}$

Work Step by Step

$\lim_{x\rightarrow 3^+}\frac{2}{(x-3)^3}=\infty \\ (as\,x\,approach\,3\,from\,right\,\,\,((x-3)^3)\,is\,positive\,and\,approach\,0)\\ \lim_{x\rightarrow 3^-}\frac{2}{(x-3)^3}=-\infty \\ (as\,x\,approach\,3\,from\,left\,\,\,((x-3)^3)\,is\,negative\,and\,approach\,\,0)\\ \lim_{x\rightarrow 3}\frac{2}{(x-3)^3} \,does\,not\,exist \\ as \lim_{x\rightarrow 3^+}\frac{2}{(x-3)^3}\neq \lim_{x\rightarrow 3^-}\frac{2}{(x-3)^3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.