Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 2 - Limits - 2.4 Infinite Limits - 2.4 Exercises - Page 86: 12

Answer

$ a.\quad -\infty$. $ b.\quad -\infty$. $ c.\quad -\infty$ $ d.\quad -\infty$ $ e.\quad -\infty$. $ f.\quad -\infty$

Work Step by Step

$ a.\quad$ Nearing $x=-2$ from the left, the graph falls without bound. $\displaystyle \lim_{x\rightarrow-2^{-}}p(x)=-\infty$. $ b.\quad$ Nearing $x=-2$ from the right, the graph falls without bound. $\displaystyle \lim_{x\rightarrow-2^{+}}p(x)=-\infty$. $ c.\quad$ Neither one-sided limit exists, but both are $-\infty.$ We write: $\displaystyle \lim_{x\rightarrow-2}p(x)=-\infty$. $ d.\quad$ Nearing $x=3$ from the left, the graph falls without bound. $\displaystyle \lim_{x\rightarrow 3^{-}}p(x)=-\infty$. $ e.\quad$ Nearing $x=3$ from the right, the graph falls without bound. $\displaystyle \lim_{x\rightarrow 3^{+}}p(x)=-\infty$. $ f.\quad$ Neither one-sided limit exists, but both are $-\infty.$ We write: $\displaystyle \lim_{x\rightarrow 3}p(x)=-\infty$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.