Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 16 - Vector Calculus - 16.6 Parametric Surfaces and Their Areas - 16.6 Exercises - Page 1161: 53

Answer

$\approx 3.56180$

Work Step by Step

$Surface \ Area ; A(S)=\iint_{D} \sqrt {1+(z_x)^2+(z_y)^2} dA$ and $\iint_{D} dA$ is the area of the region $D$ Now, $Surface \ Area; A(S)=\iint_{D} \sqrt {1+(\dfrac{2x}{x^2+y^2+2})^2+(\dfrac{2y}{(x^2+y^2+2)^2}} \ dA =\iint_{D} \sqrt {1+\dfrac{4x^2+4y^2}{(x^2+y^2+2)^2}} dA $ We will use calculator , so we get $Surface \ Area ; A(S) = \int_{0}^{2 \pi} \int_{0}^{1} r \sqrt {1+\dfrac{4r^2}{(r^2+2)^2}} \ dr \space d \theta= 2 \pi \int_{0}^{1} r \sqrt {1+\dfrac{4r^2}{(r^2+2)^2}} dr \approx 3.56180$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.