Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 16 - Vector Calculus - 16.6 Parametric Surfaces and Their Areas - 16.6 Exercises - Page 1161: 47

Answer

$\dfrac{\pi}{6} (65 \sqrt {65} -1)$

Work Step by Step

$Surface \ Area ; A(S)=\iint_{D} \sqrt {1+(\dfrac{\partial z}{\partial x} )^2+(\dfrac{\partial z}{\partial y} )^2 } dA= \iint_{D} \sqrt {1+(2x)^2+(2z)^2} dA = \iint_{D} \sqrt {1+4x^2+4z^2} \ dA $ and $\iint_{D} dA$ is the area of the region $D$ Apply polar coordinates: $x=r \cos \theta; y= r \sin \theta$ Therefore, $Surface \ Area ; A(S)=\iint_{D} \sqrt {1+(\dfrac{\partial z}{\partial x} )^2+(\dfrac{\partial z}{\partial y} )^2 } dA \\=\int_0^{2\pi} d \theta \times \int_{0}^{4} r \sqrt {1+4r^2} \ dr$ Set $1+4r^2 = u $ and $ r \ dr =\dfrac{1}{ 8} du$ Now, $Surface \ Area ; A(S)=2 \pi \times \dfrac{1}{ 8} \times \int_{1}^{65} u^{1/2} du =\dfrac{\pi}{4}\times \dfrac{2}{3}[u^{3/2}]_1^{65} =\dfrac{\pi}{6} [u\sqrt u]_1^{65}=\dfrac{\pi}{6} (65 \sqrt {65} -1)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.