Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 16 - Vector Calculus - 16.6 Parametric Surfaces and Their Areas - 16.6 Exercises - Page 1161: 46

Answer

$6\sqrt 2+\ln (2 \sqrt 2 +3)$

Work Step by Step

$Surface \ Area; A(S)=\iint_{D} \sqrt {1+(\dfrac{\partial z}{\partial x} )^2+(\dfrac{\partial z}{\partial y} )^2 } dA= \iint_{D} \sqrt {1+(1)^2+(2z)^2} dA =2 \sqrt 2 \iint_{D} \sqrt {1+2z^2+17} \ dA $ and $\iint_{D} dA$ is the area of the region $D$ Therefore, $Surface \ Area; A(S)=\iint_{D} \sqrt {1+(\dfrac{\partial z}{\partial x} )^2+(\dfrac{\partial z}{\partial y} )^2 } dA \\=\int_0^{2} \int_{0}^{2} 2 \sqrt 2 \sqrt {1+2z^2+17} \ dy \ dz \\=2 \sqrt {2} \times \int_0^2 \sqrt {1+2z^2} \ dz$ Set $\sqrt 2 z = u $ and $\dfrac{dz}{ \sqrt 2} = du$ Now, $Surface \ Area; A(S)=2 \times \int_0^{2 \sqrt 2} \sqrt {1+u^2} du =6\sqrt 2+\ln (2 \sqrt 2 +3)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.