Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 16 - Vector Calculus - 16.6 Parametric Surfaces and Their Areas - 16.6 Exercises - Page 1161: 51

Answer

$Surface \ Area ; A(S) \leq \pi \sqrt 3 R^2$

Work Step by Step

Since, $|f_x| \leq 1 $ or, $ (f_x)^2 \leq 1$ and $|f_x| \leq 1$ or, $(f_y)^2 \leq 1$ Now, $Surface \ Area ; A(S)=\iint_{D} \sqrt {1+(f_x )^2+(f_y)^2 } dA $ and $\iint_{D} dA$ is the area of the region $D$ Therefore, $Surface \ Area ; =\sqrt {1+(f_x )^2+(f_y)^2 } \leq \sqrt {1+1+1} $ or, $Surface \ Area ; =\sqrt {1+(f_x )^2+(f_y)^2 } \leq \sqrt 3$ Now, $Surface \ Area ; A(S) \leq \sqrt 3 \iint_{D} dA$ Since, $x^2+y^2 \leq R^2$ and area of the region $D$ is $\pi R^2$ Thus, $ \iint_{D} dA= \pi R^2$ Now, $Surface \ Area ; A(S) \leq \pi \sqrt 3 R^2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.