Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 16 - Vector Calculus - 16.6 Parametric Surfaces and Their Areas - 16.6 Exercises - Page 1161: 52

Answer

$\approx 3.8857$

Work Step by Step

Write the parameterization representation for the given surface as: $r=\lt r \cos \theta, r \sin \theta, \cos r^2 \gt$ Since, $Surface \ Area ; A(S)=\iint_{D} |r_r \times r_{\theta}| dA$ and $\iint_{D} dA$ is the area of the region $D$ and $|r_r \times r_{\theta}| dA=\sqrt {4r^4 \sin^2 r^2+r^2}=r \sqrt {4r^2 \sin^2 r^2+1}$ Now, $Surface \ Area ; A(S) = \iint_{D} |r_r \times r_{\theta}| dA \\=\iint_{D} r \sqrt {4r^2 \sin^2 r^2+1} \ d \theta \ dr \\=\int_0^1 \int_0^{2 \pi} r \sqrt {4r^2 \sin^2 r^2+1} d \theta dr\\=2\pi \int_0^1 r \sqrt {4r^2 \sin^2 r^2+1} \ dr$ Now, we will use calculator, so we have: $A(S) = 2\pi \int_0^1 r \sqrt {4r^2 \sin^2 r^2+1} dr \approx 3.8857$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.