Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 16 - Vector Calculus - 16.2 Line Integrals - 16.2 Exercises - Page 1125: 33

Answer

The mass of the wire is: $m=2k \pi$ and $(\overline {x}, \overline {y})=(\dfrac{4}{\pi},0)$

Work Step by Step

Here, we have $ds=\sqrt{(dx/dt)^2+(dy/dt)^2+(dz/dt)^2}=\sqrt{(-2\sin t)^2+(2\cos t)^2}dt=2 dt$ The mass of the wire is: $m=\int_C k ds=2k\int_{-\pi/2}^{\pi/2} dt=2k \pi$ Now, $\overline {x}=(\dfrac{1}{2k \pi}) \int_{C} xk ds=(1/2 \pi) \int_{C} (2 \cos t) 2dt=\dfrac{4}{\pi}$ and $\overline {y}=(\dfrac{1}{2k \pi}) \int_{C} yk ds=(1/2 \pi) \int_{C} (2 \sin t) 2dt=0$ Thus, $(\overline {x}, \overline {y})=(\dfrac{4}{\pi},0)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.