Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 16 - Vector Calculus - 16.2 Line Integrals - 16.2 Exercises - Page 1125: 24

Answer

$0.927136$

Work Step by Step

Here, we have $F[r(t)]=\sin te^{\sin t} i+\cos t \sin^2 t e^{\cos t}j+\sin t\cos te^{\tan t} k$ and $dr=(\cos t -\sin t j+\sec^2 t k) dt$ $\int_{C} \overrightarrow{F} \cdot \overrightarrow{dr}=\int_0^{\pi/4} (\sin t(e^{\sin t}) i+\cos t \sin^2 t (e^{\cos t}) j+\sin t\cos te^{\tan t} k) \cdot (\cos t i-\sin t j+\sec^2 t k) dt$ $\int_{C} \overrightarrow{F} \cdot \overrightarrow{dr}=\int_0^{\pi/4} (\sin t) (\cos t) (e^{\sin t}) -(\cos t) (\sin^3 t) (e^{\cos t})+(\tan t) (e^{\tan t}) dt$ Need to use calculator. $\int_{C} \overrightarrow{F} \cdot \overrightarrow{dr}=0.927136$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.