Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 16 - Vector Calculus - 16.2 Line Integrals - 16.2 Exercises - Page 1125: 20

Answer

$8$

Work Step by Step

Given: $r(t) = (t^2)i + (t^3)j + (-2t)k$ we get: $x = t^2$ $y = t^3$ $z = -2t$ Derive $r(t)$ to get r'(t): $r'(t) = (2t, 3t^2, -2)$ To calculate the line integral of $f$ we use: $\int_c F \times dr = \int_c F(r(t)) \cdot r'(t) dt$ $ = \int_0^2 (t^2 + (t^3)^2, (t^2)(-2t), t^3 - 2t)\cdot(2t, 3t^2, -2) dt $ $ = \int_0^2 (t^2 + t^6, -2t^3, t^3-2t) \cdot (2t, 3t^2, -2) dt $ $ = \int_0^2 (2t^3 + 2t^7 - 6t^5 - 2t^3 + 4t) dt $ $ = \int_0^2 (2t^7 - 6t^5 + 4t) dt$ $ = (\frac{2}{8}t^8 - t^6 + 2t^2)_0^2$ $ = (\frac{2}{8}(2)^8 - (2)^6 + 2(2)^2) - (\frac{2}{8}(0)^8 - (0)^6 + 2(0)^2)$ $ = 8$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.