Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 16 - Vector Calculus - 16.2 Line Integrals - 16.2 Exercises - Page 1125: 23

Answer

$0.5424$

Work Step by Step

Here, we have $F[r(t)]=e^{t-t^2} i +\sin (e^{-t^2}) j$ and $dr=(e^ti-2te^{-t^2} j) dt$ $\int_{C} \overrightarrow{F} \cdot \overrightarrow{dr}=\int_1^{2} (e^{t-t^2} i +\sin (e^{-t^2}) j) \cdot (e^ti-2te^{-t^2} j) dt$ This implies that $\int_{C} \overrightarrow{F} \cdot \overrightarrow{dr}= \int_1^{2} (e^{2t-t^2}-2t (e^{-t^2}) \sin (e^{-t^2}) dt$ Need to use calculator. $\int_{C} \overrightarrow{F} \cdot \overrightarrow{dr}=\int_1^{2} (e^{2t-t^2}-2t (e^{-t^2}) \sin (e^{-t^2}) dt=0.5424$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.