Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 16 - Vector Calculus - 16.2 Line Integrals - 16.2 Exercises - Page 1125: 19

Answer

$\frac{1}{20}$

Work Step by Step

Given: $r(t) = (t^3)i + (t^2)j$ we get: $x = t^3$ $y = t^2$ Derive $r(t)$: $r'(t) = (3t^2, 2t)$ The line integral of $f$ is calculated as follows: $\int_c F dr = \int F(r(t))\times r'(t) dt$ $ = \int_0^1 (((t^3)(t^2)^2, -(t^3)^2) \times (3t^2, 2t)) dt$ $ = \int_0^1 ((t^7, -t^6) \times (3t^2, 2t)) dt$ $ = \int_0^1 (3t^9 - 2t^7) dt$ $ = \frac{3}{10}t^{10} - \frac{2}{8}t^8 $ $ = (\frac{3}{10}(1)^{10} - \frac{2}{8}(1)^8) - (\frac{3}{10}(0)^{10} - \frac{2}{8}(0)^8)$ $ =(\frac{3}{10} - \frac{2}{8}) - (0 - 0)$ $ = \frac{1}{20}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.