Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 15 - Multiple Integrals - 15.9 Change of Variables in Multiple Integrals - 15.9 Exercises - Page 1100: 25

Answer

$ \dfrac{3}{2} \sin (1)$

Work Step by Step

$Jacobian, J(x,y)=\begin{vmatrix} \dfrac{\partial x}{\partial u}&\dfrac{\partial x}{\partial v}\\\dfrac{\partial y}{\partial u}&\dfrac{\partial y}{\partial v}\end{vmatrix}=(-1) \cdot (1) -(1)(1)=-2$ and $J(u,v)=|-\dfrac{1}{2}|=\dfrac{1}{2}$ Let us consider that $u=y-x$ and $v=x+y$ $\iint_R \cos (\dfrac{y-x}{y+x}) dA=\int_1^{2} \int_{-v}^{v} (\dfrac{1}{2} )\cos (\dfrac{u}{v}) du dv$ or, $=(\dfrac{1}{2}) \int_1^2 \sin \dfrac{u}{v}|_{-1}^1 dv$ or, $= \int_1^2 (v) (2) (\dfrac{1}{2})[ \sin (1)] dv $ Thus, we have $\iint_R \cos (\dfrac{y-x}{y+x}) dA= (\dfrac{3}{2}) \sin (1)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.