Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 15 - Multiple Integrals - 15.9 Change of Variables in Multiple Integrals - 15.9 Exercises - Page 1100: 15

Answer

$-3$

Work Step by Step

The region $R$ in the $uv$ plane is defined as follows: $R=${$(u,v) | 0 \leq v \leq 1-u, 0\leq u \leq 1$} $J(u,v)=\begin{vmatrix} \dfrac{\partial x}{\partial u}&\dfrac{\partial x}{\partial v}\\\dfrac{\partial y}{\partial u}&\dfrac{\partial y}{\partial v}\end{vmatrix}=\begin{vmatrix} 2&1\\1&2\end{vmatrix}=4-1=3$ $\iint_R (x-3y) dA=\int_0^1 [\int_0^{1-u} (2u+v) -3(u+2v)] (3) dv du$ or, $=3 \int_0^1 \int_0^{1-u} -u-5v dv du $ or, $=3 \int_0^1 [-uv-\dfrac{5v^2}{2}]_0^{1-u} du$ or, $=3 \int_0^1 -u(1-u)-\dfrac{5}{2} (u^2-2u+1) du$ or, $3 [-\dfrac{5}{2}u-\dfrac{1}{2}u^3+2u^2]_0^1=-3$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.