Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 15 - Multiple Integrals - 15.9 Change of Variables in Multiple Integrals - 15.9 Exercises - Page 1100: 16

Answer

$192$

Work Step by Step

$J(u,v) =\begin{vmatrix} \dfrac{\partial x}{\partial u}&\dfrac{\partial x}{\partial v}\\\dfrac{\partial y}{\partial u}&\dfrac{\partial y}{\partial v}\end{vmatrix}=\begin{vmatrix} \dfrac{1}{4} \cdot \dfrac{1}{4}-\dfrac{1}{4} \cdot \dfrac{-3}{4}\end{vmatrix}=\dfrac{1}{4}$ Here, we have $\iint_R (4x+8y) dA=\int_0^8 \int_{-4}^{4} (4x+8y) dA$ or, $=\int_0^8 \int_{-4}^{4} [(4) (\dfrac{1}{4}) (u+v)]+[(8)( \dfrac{1}{4}) (v-3u)] du dv $ or, $=\int_0^8 \int_{-4}^{4} [4 \dfrac{1}{4}(u+v)]+[8 \dfrac{1}{4}(v-3u)] du dv$ or, $=\int_0^8 \int_{-4}^{4}(3v-5u) \cdot du dv$ or, $=(\dfrac{1}{4}) \int_0^8[3uv-2.5u^2]_{-4}^4 dv$ or, $=(\dfrac{1}{4})\int_0^8 24 v dv$ Thus, $(\dfrac{1}{4}) [12v^2]_0^8=192$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.