Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 15 - Multiple Integrals - 15.9 Change of Variables in Multiple Integrals - 15.9 Exercises - Page 1100: 24

Answer

$\dfrac{e^6}{4}-\dfrac{7}{4}$

Work Step by Step

Let us consider that $u=x-y$ and $v=x+y$ $Jacobian, J(x,y)=\begin{vmatrix} \dfrac{\partial x}{\partial u}&\dfrac{\partial x}{\partial v}\\\dfrac{\partial y}{\partial u}&\dfrac{\partial y}{\partial v}\end{vmatrix}=1 \cdot (1) -(-1)(1)=2$ and $J(u,v)=|\dfrac{1}{2}|$ Now, $\iint_R (x+y) e^{x^2-y^2} dA=\iint_{R} (x+y) e^{(x+y)(x-y)} dA= \int_0^{3} \int_0^2 (\dfrac{1}{2}) v e^{uv} du dv$ or, $=(\dfrac{1}{2}) \int_0^3 (e^{2v}-1) dv$ or, $=(\dfrac{1}{2}) [(\dfrac{1}{2}) (e^{2v}-v)]_0^3 $ or, $= \dfrac{e^6}{4}-\dfrac{7}{4}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.