Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 15 - Multiple Integrals - 15.6 Triple Integrals - 15.6 Exercises - Page 1077: 4

Answer

$\dfrac{23}{5}$

Work Step by Step

Need to integrate the given integral first with respect to $z$, then $x$, and then $y$ $ \int_{0}^1 \int_{y}^{2y} \int_{0}^{x+y} 6xy dz dx dy= \int_{0}^1 \int_{y}^{2y} |6xyz|_{0}^{x+y} dx dy$ or, $=\int_{0}^1\int_y^{2y} 6xy(x+y) dx dy$ or, $=\int_0^1 \int_y^{2y} [6x^2y+6xy^2]dx dy$ or, $=(6) \int^{0}_{1}[\dfrac{1}{3} 8y^4+\dfrac{4y^4}{2}] dy$ or, $=(6) [\dfrac{8y^5}{15}+\dfrac{2y^5}{5}]^{0}_{1}$ or, $=[\dfrac{23y^5}{5}]_0^1$ or, $=\dfrac{23}{5}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.