Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 15 - Multiple Integrals - 15.6 Triple Integrals - 15.6 Exercises - Page 1077: 2

Answer

$21$

Work Step by Step

Let us consider that $I=\int \int \int (xy+z^{2}) dV$ Here, we have $E = (x,y,z) | 0 \leq x \leq 2, 0 \leq y \leq\ 1, 0 \leq z \leq 3$ Now, integrating the integral $\int \int \int (xy+z^{2}) dV$ initially with respect to $x$, then $y$, and then $z$ $I = \int^{3}_{0} \int^{1}_{0} \int^{2}_{0} (xy+z^{2}) dx dy dz=\int^{3}_{0} \int^{1}_{0} [\dfrac{x^{2}y}{2}+z^{2}x]^{x=2}_{x=0}dy dz$ This implies that $I=\int^{3}_{0} \int^{1}_{0} 2y+2z^{2}dydz=\int^{3}_{0} [y^{2} + 2z^{2}y]^{1}_{0}dz$ Hence, we have $I=\int^{3}_{0} 1+2z^{2}dz=|z+(2/3)z^{3}|^{3}_{0} =(3-0)+[\dfrac{2}{3} (27)-0]=21$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.