Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 15 - Multiple Integrals - 15.6 Triple Integrals - 15.6 Exercises - Page 1077: 15

Answer

$\dfrac{8}{15}$

Work Step by Step

Let us consider that $I=\iiint_T y^2 dV$ $I= \int_{0}^2 \int_{0}^{2-x} \int_{0}^{2-x-y} y^2 dz dy dx $ Thus, we have $\int_{0}^2 \int_{0}^{2-x}[y^2 z]_{0}^{2-x-y} dy dx=\int_{0}^2 \int_{0}^{2-x}2y^2-xy^2-y^3 dy dx$ and $ \int_{0}^{2}[\dfrac{2y^3}{3}-\dfrac{xy^3}{3}-\dfrac{y^4}{4}]_{0}^{2-x} dx=\int^{0}_{2} \dfrac{(2-x)}{3}-\dfrac{(2-x)^3}{3}-\dfrac{(2-x)^4}{4} dx$ and $\int_0^2\dfrac{(x-2)^4}{12}dx=[\dfrac{(x-2)^5}{(12)(5)}]_0^2$ or, $\iiint_T y^2 dV=[\dfrac{(2-2)^5}{60}-\dfrac{(0-2)^5}{60}]=\dfrac{8}{15}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.