Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 15 - Multiple Integrals - 15.6 Triple Integrals - 15.6 Exercises - Page 1077: 10

Answer

$\dfrac{3e-7}{6}$

Work Step by Step

Let us consider that $I=\iiint_E e^{z/y} dV$ $ I=\int_{0}^1 \int_{y}^{1} \int_{0}^{xy}(e^{z/y}) dz dx dy= \int_{0}^{1} \int_{y}^{1} [y(e^{z/y})]_{0}^{xy} dx dy=\int_{0}^1 [ye^{x}-xy]_y^1 dy$ Further, $\int_{0}^{3} yx+y^2-yx+y^2 dy dx= \int_0^{1}[(e-1)y-ye^y+y^2] dy$ and $[\dfrac{1}{2}(e-1)y^2-(ye^y-e^y) +(\dfrac{1}{3})y^3]_0^1=\dfrac{(e-1)}{2}-e+e+\dfrac{1}{3}-1=\dfrac{(e-1)}{2}+\dfrac{1}{3}-1$ or, $\iiint_E e^{z/y} dV=\dfrac{3e-7}{6}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.