Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 15 - Multiple Integrals - 15.6 Triple Integrals - 15.6 Exercises - Page 1077: 11

Answer

$\dfrac{9 \pi}{8}$

Work Step by Step

Let us consider that $I=\iiint_E \dfrac{z}{x^2+z^2} dV$ $ I=\int_{1}^{4} \int_{y}^{4} \int_{0}^{z}\dfrac{z}{x^2+z^2} dx dzdy$ Further, $\int_{1}^{4} \int_{y}^{4} [(z)\dfrac{1}{z}\tan^{-1}(\dfrac{x}{z}]_{0}^{z} dzdy=\int_{1}^{4} \int_{y}^{4} (\dfrac{\pi}{4}) dzdy$ and $ \int_{1}^{4} (\dfrac{\pi}{4})[z]_y^4dy= \int_{1}^{4} [\pi-\dfrac{\pi y}{4} ] dy$ Hence$\iiint_E \dfrac{z}{x^2+z^2} dV=[\pi y-(\dfrac{\pi}{8})y^2]_1^4=\dfrac{9 }{8}\pi$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.