Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 15 - Multiple Integrals - 15.1 Double Integrals over Rectangles - 15.1 Exercises - Page 1039: 13

Answer

(a) $2+8y^2$ (b) $3x(1+9x)$

Work Step by Step

$f(x,y) = x + 3x^2 y^2$ (a) $ \int_0^2 f(x,y) dx = \int_0^2 (x + 3x^2 y^2) dx$ $= (\frac{x^2}{2} + x^3 y^2)\big|_0^2$ $= [(2+8y^2)-(0)]$ $= 2+8y^2$ (b) $ \int_0^3 f(x,y) dx = \int_0^3 (x + 3x^2 y^2) dy$ $= (xy + x^2 y^3)\big|_0^3$ $= [(3x+27x^2)-(0)]$ $= 3x(1+9x)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.