Answer
$$x-3\tan^{-1}(x/3)+C$$
Work Step by Step
Given $$ \int \frac{x^{2} d x}{x^{2}+9}$$
Since
\begin{align*}
\int \frac{x^{2} d x}{x^{2}+9}&=\int\left( \frac{x^{2}+9-9}{x^{2}+9}\right)dx\\
&=\int\left(1- \frac{ 9}{x^{2}+9}\right)dx\\
&=x-3\tan^{-1}(x/3)+C
\end{align*}