Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 8 - Techniques of Integration - 8.5 The Method of Partial Fractions - Exercises - Page 423: 1

Answer

a) $\frac{x^{2}+4x+12}{(x+2)(x^{2}+4)}$ = $\frac{1}{x+2}+\frac{4}{x^{2}+4}$ b) $\frac{2x^{2}+8x+24}{(x+2)^{2}(x^{2}+4)}$ = $\frac{1}{x+2}+\frac{2}{(x+2)^{2}}+\frac{-x+2}{x^{2}+4}$ c) $\frac{x^{2}-4x+8}{(x-1)^{2}(x-2)^{2}}$ = $\frac{-8}{x-2}+\frac{4}{(x-2)^{2}}+\frac{8}{x-1}+\frac{5}{(x-1)^{2}}$ d) $\frac{x^{4}-4x+8}{(x+2)(x^{2}+4)}$ = $x-2+\frac{4}{x+2}-\frac{4x-4}{x^{2}+4}$

Work Step by Step

a) $\frac{x^{2}+4x+12}{(x+2)(x^{2}+4)}$ = $\frac{1}{x+2}+\frac{4}{x^{2}+4}$ b) $\frac{2x^{2}+8x+24}{(x+2)^{2}(x^{2}+4)}$ = $\frac{1}{x+2}+\frac{2}{(x+2)^{2}}+\frac{-x+2}{x^{2}+4}$ c) $\frac{x^{2}-4x+8}{(x-1)^{2}(x-2)^{2}}$ = $\frac{-8}{x-2}+\frac{4}{(x-2)^{2}}+\frac{8}{x-1}+\frac{5}{(x-1)^{2}}$ d) $\frac{x^{4}-4x+8}{(x+2)(x^{2}+4)}$ = $x-2+\frac{4}{x+2}-\frac{4x-4}{x^{2}+4}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.