Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 6 - Applications of the Integral - Chapter Review Exercises - Page 320: 42

Answer

$\dfrac{2 \pi}{3}[(1+c^2)^{3/2}-1] $

Work Step by Step

The shell method to compute the volume of a region: The volume of a solid obtained by rotating the region under $y=f(x)$ over an interval $[m,n]$ about the y-axis is given by: $V=2 \pi \int_{m}^{n} (Radius) \times (height \ of \ the \ shell) \ dy=2 \pi \int_{m}^{n} (y) \times f(y) \ dy$ Now, $V=2\pi \int_{0}^{c} (x) (\sqrt {1+x^2}) \ dx$ Consider $a=1+x^2 \implies dx=\dfrac{da}{2x}$ Now, $V= 2\pi \int_{0}^{c} (x) (\sqrt {a})\times \dfrac{1}{2x} \ da \\=2 \pi [\dfrac{1}{3} a^{3/2}] \\=\dfrac{2 \pi}{3} (1+x^2)^{3/2} \\=\dfrac{2 \pi}{3} [(1+x^2)^{3/2}]_0^c \\=\dfrac{2 \pi}{3}[(1+c^2)^{3/2}-1] $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.