Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 6 - Applications of the Integral - Chapter Review Exercises - Page 320: 37

Answer

$\dfrac{128 \pi}{15}$

Work Step by Step

The shell method to compute the volume of a region: The volume of a solid obtained by rotating the region under $y=f(x)$ over an interval $[m,n]$ about the y-axis is given by: $V=2 \pi \int_{m}^{n} (Radius) \times (height \ of \ the \ shell) \ dy=2 \pi \int_{m}^{n} (y) \times f(y) \ dy$ Now, $V=2\pi \int_{0}^{2} (y) (4y-y^3) \ dy \\= 2\pi \int_{0}^{2} (4y^2-y^4) \ dy \\=2 \pi \times [\dfrac{4y^3}{3}-\dfrac{y^5}{5}]_0^2 \\=2 \pi \times [\dfrac{4(2^3)}{3}-\dfrac{(2^5)}{5} ] \\=\dfrac{128 \pi}{15}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.