Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 6 - Applications of the Integral - Chapter Review Exercises - Page 319: 8

Answer

$\dfrac{1}{8}$

Work Step by Step

The point of intersection can be computed as: $\dfrac{y}{2}=y\sqrt {1-y^2} \\ -y^2=\dfrac{1}{4}-1 \\ y = \pm \dfrac{\sqrt 3}{2}$ The area $(A)$ can be calculated as: $A=\int_{0}^{\frac{\sqrt 3}{2}} [y\sqrt {1-y^2}-\dfrac{y}{2}] \ dy +\int_{\frac{\sqrt 3}{2}}^1 [\dfrac{y}{2}-y\sqrt {1-y^2}] \ dy \\= [-\dfrac{(1-y^2)^{3/2}}{3}-\dfrac{y^2}{4}]_{0}^{\frac{\sqrt 3}{2}} +[\dfrac{(1-y^2)^{3/2}}{3}+\dfrac{y^2}{4}]_{\frac{\sqrt 3}{2}}^1\\=\dfrac{-1}{24}-\dfrac{3}{16}+\dfrac{1}{3}+\dfrac{1}{4}-\dfrac{3}{16}-\dfrac{1}{24} \\=\dfrac{1}{8} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.