Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 6 - Applications of the Integral - Chapter Review Exercises - Page 319: 3

Answer

$\dfrac{1}{2}$

Work Step by Step

The area $(A)$ can be calculated as: $A=\int_{0}^1 [(x^3-2x^2+x)-(x^2-x)] \ dx+\int_{1}^2 [(x^2-x)-(x^3-2x^2+x)] \ dx \\= \int_{0}^1 [(x^3-2x^2+x-x^2+x] \ dx+\int_{1}^2 [x^2-x-x^3+2x^2-x] \ dx \\=\int_0^1 [x^3-3x^2+2x] \ dx +\int_1^2 [3x^2-2x-x^3] \ dx \\=[\dfrac{x^4}{4}-x^3+x^2 ]_0^1+[x^3 -x^2-\dfrac{x^4}{4}]_1^2 \\=\dfrac{1}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.