Answer
$V$ = $\pi(Rh^{2}-\frac{1}{3}h^{3})$
Work Step by Step
let
r = radius at height y
$r$ = $\sqrt {R^{2}-(R-y)^{2}}$
$V$ = $\pi\int_0^{h}r^{2}dy$
$V$ = $\pi\int_0^{h}\sqrt {R^{2}-(R-y)^{2}}dy$
$V$ = $\pi\int_0^{h}(R^{2}-R^{2}+2Ry-y^{2})dy$
$V$ = $\pi\int_0^{h}(2Ry-y^{2})dy$
$V$ = $\pi(Ry^{2}-\frac{1}{3}y^{3})|_0^h$
$V$ = $\pi(Rh^{2}-\frac{1}{3}h^{3})$