Answer
$\frac{1}{2}\cot(9-2\theta)+c.$
Work Step by Step
Since $(\cot(9-2\theta))'=2\csc^2(9-2\theta)$, we have
\begin{align*}
\int\csc^2(9-2\theta) d\theta &=\frac{1}{2}\int 2\csc^2(9-2\theta) d\theta \\
&=\frac{1}{2}\cot(9-2\theta)+c.
\end{align*}