Answer
$\frac{1}{27} \tan(9t^3+1)+c.$
Work Step by Step
Since $(\tan(9t^3+1))'=27t^2\sec^2(9t^3+1)$, then we have
\begin{align*}
\int t^2 \sec^2(9t^3+1) d t &=\frac{1}{27}\int 27t^2 \sec^2(9t^3+1) d t \\
&=\frac{1}{27} \tan(9t^3+1)+c.
\end{align*}