Answer
$f(x) $ is increasing for all $x$
Work Step by Step
Given $$f(x)=x^{3}-2 x^{2}+2 x$$
Since
\begin{align*}
f'(x)&=3x^{2}-4 x+2 \\
&= 3\left( x^{2}-\frac{4}{3} x+\frac{2}{3} \right)\\
&=3\left( x -\frac{2}{3} \right)^2 +\frac{2}{3} \\
&>\frac{2}{3}>0
\end{align*}
Then $f(x) $ is increasing for all $x$