Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 4 - Applications of the Derivative - 4.3 The Mean Value Theorem and Monotonicity - Exercises - Page 189: 42

Answer

$f(x)$ increasing on $\left( -\frac{1+\sqrt{5}}{2},\frac{1+\sqrt{5}}{2}\right )$ and decreasing on $\left(-\infty, -\frac{1+\sqrt{5}}{2}\right )\cup\left( \frac{1+\sqrt{5}}{2},\infty\right ) $ $f(x)$ has a local maximum at $x= \frac{1+\sqrt{5}}{2} $ and a local minimum at $x=- \frac{1+\sqrt{5}}{2} $.

Work Step by Step

Given $$y=\frac{2 x+1}{x^{2}+1}$$ Since \begin{align*} f'(x) &=\frac{\frac{d}{dx}\left(2x+1\right)\left(x^2+1\right)-\frac{d}{dx}\left(x^2+1\right)\left(2x+1\right)}{\left(x^2+1\right)^2}\\ &= \frac{-2x^2-2x+2}{\left(x^2+1\right)^2} \end{align*} Then $f'(x)=0$ for $-2x^2-2x+2= 0 $. Hence $$\quad x=-\frac{1+\sqrt{5}}{2},\:x=\frac{\sqrt{5}-1}{2} $$ Choose $x=-2,\ \ x=0 $ and $x=1$: \begin{align*} f'(-2)&< 0\\ f'(0)&>0\\ f'(1)&<0 \end{align*} Then $f(x)$ is increasing on $\left( -\frac{1+\sqrt{5}}{2},\frac{1+\sqrt{5}}{2}\right )$ and decreasing on $\left(-\infty, -\frac{1+\sqrt{5}}{2}\right )\cup\left( \frac{1+\sqrt{5}}{2},\infty\right ) $. Hence, $f(x)$ has a local maximum at $x= \frac{1+\sqrt{5}}{2} $ and a local minimum at $x=- \frac{1+\sqrt{5}}{2}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.