Answer
For $x=1\pm\sqrt2$, $\dfrac{dx}{dy}$ is equal to zero.
Since $\dfrac{dx}{dy}$ is equal to zero only when the tangent line is vertical.
The tangent lines at $x = 1 ±\sqrt2$ to the conchoid with equation $(x − 1)^2(x^2 + y^2) = 2x^2$ are vertical.
Work Step by Step
Firstly differentiate $(x − 1)^2(x^2 + y^2) = 2x^2$ with respect to $y$ using product rule and chain rule.
$\dfrac{d}{dy}\left((x-1)^2(x^2+y^2)\right)=\dfrac{d}{dy}\left(2x^2\right)$
$\implies (x-1)^2\dfrac{d}{dy}\left((x^2+y^2)\right)+(x^2+y^2)\dfrac{d}{dy}\left((x-1)^2\right)=4x\dfrac{dx}{dy}$
$\implies (x-1)^2\left(2x\dfrac{dx}{dy}+2y\right)+(x^2+y^2)\times2(x-1)\dfrac{d}{dy}\left(x-1\right)=4x\dfrac{dx}{dy}$
$\implies (x-1)^2\left(2x\dfrac{dx}{dy}+2y\right)+2(x^2+y^2)(x-1)\dfrac{dx}{dy}=4x\dfrac{dx}{dy}$
$\implies 2x(x-1)^2\dfrac{dx}{dy}+2y(x-1)^2+2(x^2+y^2)(x-1)\dfrac{dx}{dy}=4x\dfrac{dx}{dy}$
Now isolate terms with $\dfrac{dx}{dy}$.
We get, $2x(x-1)^2\dfrac{dx}{dy}-4x\dfrac{dx}{dy}+2(x^2+y^2)(x-1)\dfrac{dx}{dy}=-2y(x-1)^2$
Now take $\dfrac{dx}{dy}$ common.
$\left(2x(x-1)^2-4x+2(x^2+y^2)(x-1)\right)\dfrac{dx}{dy}=-2y(x-1)^2$
$\implies \dfrac{dx}{dy}=\dfrac{-2y(x-1)^2}{2x(x-1)^2-4x+2(x^2+y^2)(x-1)}$
Now substitute $x=1+\sqrt2$ in $(x − 1)^2(x^2 + y^2) = 2x^2$ and then solve for $y$.
$(1+\sqrt2 − 1)^2((1+\sqrt2)^2 + y^2) = 2(1+\sqrt2)^2$
$\implies (\sqrt2 )^2(1+2+2\sqrt2 + y^2) = 2(1+2+2\sqrt2)$
$\implies 2(3+2\sqrt2 + y^2) = 2(3+2\sqrt2)$
$\implies 3+2\sqrt2 + y^2 = 3+2\sqrt2$
$\implies y^2 = 0$ or $y=0$
Now substitute $x=1-\sqrt2$ in $(x − 1)^2(x^2 + y^2) = 2x^2$ and then solve for $y$.
$(1-\sqrt2 − 1)^2((1-\sqrt2)^2 + y^2) = 2(1-\sqrt2)^2$
$\implies (-\sqrt2 )^2(1+2-2\sqrt2 + y^2) = 2(1+2-2\sqrt2)$
$\implies 2(3-2\sqrt2 + y^2) = 2(3-2\sqrt2)$
$\implies 3-2\sqrt2 + y^2 = 3-2\sqrt2$
$\implies y^2 = 0$ or $y=0$
If we substitute $y=0$ in $\dfrac{dx}{dy}=\dfrac{-2y(x-1)^2}{2x(x-1)^2-4x+2(x^2+y^2)(x-1)}$.
We get, $\dfrac{dx}{dy}=0$.
Since $y=0$ when $x=1\pm\sqrt2$
Thus, for $x=1\pm\sqrt2$, $\dfrac{dx}{dy}=0$.
Since $\dfrac{dx}{dy}$ is equal to zero only when the tangent line is vertical.
The tangent lines at $x = 1 ±\sqrt2$ to the conchoid with equation $(x − 1)^2(x^2 + y^2) = 2x^2$ are vertical.