Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 3 - Differentiation - 3.8 Implicit Differentiation - Exercises - Page 154: 58

Answer

$$-3$$

Work Step by Step

We are given: $$ x^{3}+y^{3}=3 x+y-2 $$ Differentiate with respect to $x$: \begin{align*} 3x^{2}+3y^{2}y'=3 +y'\\ y'&= \frac{3\left(1-x^{2}\right)}{3 y^{2}-1} \\ y'\bigg|_{(1,1)}&=0 \end{align*} Now we take the second derivative: \begin{align*} y''&= 3\left(\frac{-2 x\left(3 y^{2}-1\right)-6 y\left(\frac{d y}{d x}\right)\left(1-x^{2}\right)}{\left(3 y^{2}-1\right)^{2}}\right)\\ &=3\left(\frac{-6 x y^{2}+2-6 y y^{\prime}\left(1-x^{2}\right)}{\left(3 y^{2}-1\right)^{2}}\right)\\ y''\bigg|_{(1,1)}&= -3 \end{align*}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.