Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 3 - Differentiation - 3.8 Implicit Differentiation - Exercises - Page 153: 51

Answer

The points where the tangent line is vertical are $(1,0)$, $(-1,0)$, $\left(\dfrac{\sqrt{3}}{2},\dfrac{1}{\sqrt2}\right)$, $\left(-\dfrac{\sqrt{3}}{2},\dfrac{1}{\sqrt2}\right)$, $\left(\dfrac{\sqrt{3}}{2},-\dfrac{1}{\sqrt2}\right)$ and $\left(-\dfrac{\sqrt{3}}{2},-\dfrac{1}{\sqrt2}\right)$.

Work Step by Step

Differentiate $y^4 + 1 = y^2 + x^2$ with respect to $y$ using chain rule. We get, $4y^3=2y+2x\dfrac{dx}{dy}$ Now solve for $\dfrac{dx}{dy}$. $2x\dfrac{dx}{dy}+2y=4y^3$ $\implies 2x\dfrac{dx}{dy}=4y^3-2y$ $\implies \dfrac{dx}{dy}=\dfrac{4y^3-2y}{2x}$ $\implies \dfrac{dx}{dy}=\dfrac{2y^3-y}{x}$ Since, tangent line is vertical when $\dfrac{dx}{dy}=0$. Substitute $\dfrac{dx}{dy}=0$ in $\dfrac{dx}{dy}=\dfrac{2y^3-y}{x}$. We get, $0=\dfrac{2y^3-y}{x}$ Since, $x\ne0$ $\implies 2y^3-y=0$ $\implies y(2y^2-1)=0$ $\implies y=0$ or $2y^2-1=0$ Now solve $2y^2-1=0$ as follows. $2y^2-1=0$ $\implies y^2=\dfrac{1}{2}$ $\implies y=\pm\dfrac{1}{\sqrt2}$ So, at $y=0$, $y=\dfrac{1}{\sqrt2}$ and $y=-\dfrac{1}{\sqrt2}$ the tangent line is vertical. To find the x-coordinates substitute values of y-coordinate in $y^4 + 1 = y^2 + x^2$. For $y=0$ x-coordinates can be calculated as follows. $0^4 + 1 = 0^2 + x^2$ $\implies x^2=1$ or $x=\pm1$ So the points with $y=0$ are $(1,0)$ and $(-1,0)$. For $y=\dfrac{1}{\sqrt2}$ x-coordinates can be calculated as follows. $\left(\dfrac{1}{\sqrt2}\right)^4 + 1 = \left(\dfrac{1}{\sqrt2}\right)^2 + x^2$ $\implies \dfrac{1}{4} + 1 = \dfrac{1}{2} + x^2$ $\implies x^2=\dfrac{1}{4}+1-\dfrac{1}{2}=\dfrac{1+4-2}{4}=\dfrac{3}{4}$ $\implies x=\pm\dfrac{\sqrt{3}}{2}$ So the points with $y=\dfrac{1}{\sqrt2}$ are $\left(\dfrac{\sqrt{3}}{2},\dfrac{1}{\sqrt2}\right)$ and $\left(-\dfrac{\sqrt{3}}{2},\dfrac{1}{\sqrt2}\right)$. For $y=-\dfrac{1}{\sqrt2}$ x-coordinates can be calculated as follows. $\left(-\dfrac{1}{\sqrt2}\right)^4 + 1 = \left(-\dfrac{1}{\sqrt2}\right)^2 + x^2$ $\implies \dfrac{1}{4} + 1 = \dfrac{1}{2} + x^2$ $\implies x^2=\dfrac{1}{4}+1-\dfrac{1}{2}=\dfrac{1+4-2}{4}=\dfrac{3}{4}$ $\implies x=\pm\dfrac{\sqrt{3}}{2}$ So the points with $y=\dfrac{1}{\sqrt2}$ are $\left(\dfrac{\sqrt{3}}{2},-\dfrac{1}{\sqrt2}\right)$ and $\left(-\dfrac{\sqrt{3}}{2},-\dfrac{1}{\sqrt2}\right)$. Thus, the points where the tangent line is vertical are $(1,0)$, $(-1,0)$, $\left(\dfrac{\sqrt{3}}{2},\dfrac{1}{\sqrt2}\right)$, $\left(-\dfrac{\sqrt{3}}{2},\dfrac{1}{\sqrt2}\right)$, $\left(\dfrac{\sqrt{3}}{2},-\dfrac{1}{\sqrt2}\right)$ and $\left(-\dfrac{\sqrt{3}}{2},-\dfrac{1}{\sqrt2}\right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.