Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 3 - Differentiation - 3.8 Implicit Differentiation - Exercises - Page 154: 61

Answer

a) $\frac{dy}{dt}=(\frac{x^{2}}{y^{2}})\frac{dx}{dt}$ b) $\frac{dy}{dt}=-(\frac{y+x}{2y^{3}+x})\frac{dx}{dt}$

Work Step by Step

a) Implicitly differentiating $x^{3}-y^{3}=1$ with respect to $t$, we have $3x^{2}\frac{dx}{dt}-3y^{2}\frac{dy}{dt}=0$ $\implies 3y^{2}\frac{dy}{dt}=3x^{2}\frac{dx}{dt}$ $\implies \frac{dy}{dt}=\frac{3x^{2}}{3y^{2}}\frac{dx}{dt}=(\frac{x^{2}}{y^{2}})\frac{dx}{dt}$ b) Implicitly differentiating $y^{4}+2xy+x^{2}=0$ with respect to $t$, we have $4y^{3}\frac{dy}{dt}+2(\frac{dx}{dt}\times y+x\frac{dy}{dt})+2x\frac{dx}{dt}=0$ $\implies 4y^{3}\frac{dy}{dt}+2x\frac{dy}{dt}=-2y\frac{dx}{dt}-2x\frac{dx}{dt}$ $\implies \frac{dy}{dt}(4y^{3}+2x)=(-2y-2x)\frac{dx}{dt}$ $\implies \frac{dy}{dt}=(\frac{-2y-2x}{4y^{3}+2x})\frac{dx}{dt}=(\frac{-y-x}{2y^{3}+x})\frac{dx}{dt}$ $=-(\frac{y+x}{2y^{3}+x})\frac{dx}{dt}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.