Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 3 - Differentiation - 3.8 Implicit Differentiation - Exercises - Page 152: 23

Answer

$$ y'(x) = \frac{\sec ^{2} x-\sec ^{2}(x+y)}{\sec ^{2}(x+y)-\sec ^{2} y} $$

Work Step by Step

Given $$\tan (x+y)=\tan x+\tan y$$ Differentiate with respect to $x$ \begin{align*} \frac{d}{dx} \tan (x+y)&=\frac{d}{dx}[\tan x+\tan y] \\ \sec^2 \left(x+ y\right)[1+y'(x) ]&=\sec^2 x+ \sec^2 y y'(x) \\ \left [\sec^2 \left(x+ y\right) -\sec^2 y \right] y'(x)& =\sec^2 x- \sec^2 \left(x+ y\right) \end{align*} Then $$ y'(x) = \frac{\sec ^{2} x-\sec ^{2}(x+y)}{\sec ^{2}(x+y)-\sec ^{2} y} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.