Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 3 - Differentiation - 3.8 Implicit Differentiation - Exercises - Page 152: 18

Answer

$$y'(x)= -\frac{3 y^{\frac{1}{3}}}{4 \sqrt{x} \cdot\left(1+6 y^{\frac{1}{3}}\right)} $$

Work Step by Step

Given $$x^{1 / 2}+y^{2 / 3}=-4 y$$ Differentiate with respect to $x$ \begin{align*} \frac{d}{dx} \left(x^{1 / 2}+y^{2 / 3} \right)& = \frac{d}{dx} \left(-4 y\right)\\ \frac{1}{2}x^{-1 / 2}+\frac{2}{3}y^{- 1/ 3} y'(x)&= -4 y'(x)\\ \left (4 + \frac{2}{3}y^{- 1/ 3} \right) y'(x)& = \frac{-1}{2}x^{-1 / 2}\\ \left (\frac{2+12 y^{\frac{1}{3}}}{3 y^{\frac{1}{3}}} \right)y'(x)&= \frac{-1}{2}x^{-1 / 2}\\ \end{align*} Then $$y'(x)= -\frac{3 y^{\frac{1}{3}}}{4 \sqrt{x} \cdot\left(1+6 y^{\frac{1}{3}}\right)} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.