Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 3 - Differentiation - 3.8 Implicit Differentiation - Exercises - Page 152: 22

Answer

$$ y'(x) = \frac{3 (x+y)^{2}-2xy\sec^2\left(x^{2} y\right) }{\left [x^{2}\sec^2 \left(x^{2} y\right) -3(x+y)^2 \right] } $$

Work Step by Step

Given $$\tan \left(x^{2} y\right)=(x+y)^{3} $$ Differentiate with respect to $x$ \begin{align*} \frac{d}{dx} \tan \left(x^{2} y\right)&=\frac{d}{dx} (x+y)^{3} \\ \sec^2 \left(x^{2} y\right)[x^{2} y'(x) +2x y ]&= 3 (x+y)^{2}( 1+y'(x) ) \\ \left [x^{2}\sec^2 \left(x^{2} y\right) -3(x+y)^2 \right] y'(x)& =3 (x+y)^{2}-2xy\sec^2 \left(x^{2} y\right) \end{align*} Then $$ y'(x) = \frac{3 (x+y)^{2}-2xy\sec^2\left(x^{2} y\right) }{\left [x^{2}\sec^2 \left(x^{2} y\right) -3(x+y)^2 \right] } $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.