Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 3 - Differentiation - 3.7 The Chain Rule - Exercises - Page 146: 8

Answer

a) $2x\cos(x^{2}+1)$ b) $9x\sqrt {x^{2}+1}$ c) $4x^{3}+2x $

Work Step by Step

Using the chain rule, we have $\frac{d}{dx}(f(x^{2}+1))=\frac{d}{du}(f(u))\times\frac{d}{dx}(x^{2}+1)=f'(u)\times2x $ a) $ f(u)=\sin u\implies f'(u)=\cos u $ $\frac{d}{dx}f(x^{2}+1)=\cos (u)\times2x $ $=2x\cos(x^{2}+1)$ b) $ f(u)=3u^{3/2}\implies f'(u)=3\times\frac{3}{2}u^{1/2}=\frac{9}{2}\sqrt u $ $\frac{d}{dx}f(x^{2}+1)=\frac{9}{2}\sqrt u\times2x=9x\sqrt {x^{2}+1}$ c) $ f(u)=u^{2}-u $, $ f'(u)=2u-1$ $\frac{d}{dx}f(x^{2}+1)=(2u-1)2x $ $=[2(x^{2}+1)-1]2x=(2x^{2}+1)2x $ $=4x^{3}+2x $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.