Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 3 - Differentiation - 3.7 The Chain Rule - Exercises - Page 146: 69

Answer

$$ y' =\frac{1}{8\sqrt{x}\sqrt{1+\sqrt{x}}\sqrt{1+\sqrt{1+\sqrt{x}}}}.$$

Work Step by Step

Since $ y=\sqrt{1+\sqrt{1+\sqrt{x}}}$, then by using the chain rule: $(f(g(x)))^{\prime}=f^{\prime}(g(x)) g^{\prime}(x)$, the derivative $ y'$ is given by $$ y'=\frac{(1+\sqrt{1+\sqrt{x}})'}{2\sqrt{1+\sqrt{1+\sqrt{x}}}}\\= \frac{\frac{\frac{1}{2\sqrt{x}}}{2\sqrt{1+\sqrt{x}}}}{2\sqrt{1+\sqrt{1+\sqrt{x}}}} \\=\frac{\frac{(1+\sqrt{x})'}{2\sqrt{1+\sqrt{x}}}}{2\sqrt{1+\sqrt{1+\sqrt{x}}}}\\ =\frac{1}{8\sqrt{x}\sqrt{1+\sqrt{x}}\sqrt{1+\sqrt{1+\sqrt{x}}}}.$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.