Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 2 - Limits - 2.3 Basic Limit Laws - Exercises - Page 59: 42

Answer

(a) $L(ab)=\lim\limits_{x \to 0}\frac{(ab)^{x}-1}{x}=\lim\limits_{x \to 0}\frac{a^{x}(b^{x}-1)+(a^{x}-1)}{x}=\lim\limits_{x \to 0}\frac{a^{x}(b^{x}-1)}{x}+\frac{a^{x}-1}{x}=\lim\limits_{x \to 0}\frac{b^{x}-1}{x} + \lim\limits_{x \to 0}\frac{a^{x}-1}{x}=L(b)+L(a)$ (b) $L(12)=L(3\times4)=\lim\limits_{x \to 0}\frac{(4\times3)^{x}-1}{x}=\lim\limits_{x \to 0}\frac{4^{x} (3^{x}-1) }{x}+\lim\limits_{x \to 0} \frac{4^{x}-1}{x}=L(3)+L(4)$

Work Step by Step

(a) . ab>0, thus $L(ab)=\lim\limits_{x \to 0}\frac{ab^{x}-1}{x}$ exist. And using : $ab^{x}-1=a^{x}(b^{x}-1)+(a^{x}-1)$ , we get $ L(ab)=\lim\limits_{x \to 0}\frac{a^{x}(b^{x}-1)+(a^{x}-1)}{x}=\lim\limits_{x \to 0}(a^{x}.\frac{b^{x}-1}{x}+\frac{a^{x}-1}{x}) $ We know that : $\lim\limits_{x \to 0}a^{x}=1$ and $\lim\limits_{x \to 0}\frac{b^{x}-1}{x}=L(b)$ Thus $\lim\limits_{x \to 0}a^{x}.\frac{b^{x}-1}{x}=L(b) ...(*)$ And we have $\lim\limits_{x \to 0}\frac{a^{x}-1}{x}=L(a) ...(**)$ Hence $L(ab)=\lim\limits_{x \to 0}(a^{x}.\frac{b^{x}-1}{x}+\frac{a^{x}-1}{x})=L(b)+L(a)$ (b) . We have $ L(3)=\lim\limits_{x \to 0}\frac{3^{x}-1}{x}$ $L(4)=\lim\limits_{x \to 0}\frac{4^{x}-1}{x}$ In the other hand we have $L(12)=L(4\times3)=\lim\limits_{x \to 0}\frac{(4\times3)^{x}-1}{x}=\lim\limits_{x \to 0}\frac{4^{x}(3^{x}-1)+(4^{x}-1)}{x}=\lim\limits_{x \to 0}(4^{x}.\frac{3^{x}-1}{x}+\frac{4^{x}-1}{x})=\lim\limits_{x \to 0}4^{x}.\frac{3^{x}-1}{x}+\lim\limits_{x \to 0}\frac{4^{x}-1}{x}$ Using $(*)$ from the previous question we get $\lim\limits_{x \to 0}4^{x}.\frac{3^{x}-1}{x}=L(3)$ Hence $L(12)=L(3)+L(4)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.