Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - Chapter Review Exercises - Page 909: 59

Answer

(a) we show that $F$ maps ${\cal D}$ to a rectangle ${\cal R}$ in the $uv$-plane, where ${\cal R} = \left\{ {\left( {u,v} \right)|8 \le u \le 9,5 \le v \le 6} \right\}$ (b) ${\rm{Area}}\left( {\cal D} \right) \approx \frac{1}{5}$

Work Step by Step

(a) Referring to Figure 6, we see that ${\cal D}$ is defined by ${\cal D} = \left\{ {\left( {x,y} \right)|8 \le y + {x^2} \le 9,5 \le y - {x^3} \le 6} \right\}$ Since $F$ is the map: $u = y + {x^2}$, $v = y - {x^3}$, so $8 \le u \le 9$, ${\ \ \ \ \ }$ $5 \le v \le 6$ Let ${\cal R}$ denote the rectangle defined by ${\cal R} = \left\{ {\left( {u,v} \right)|8 \le u \le 9,5 \le v \le 6} \right\}$ Therefore, $F$ maps ${\cal D}$ to a rectangle ${\cal R}$ in the $uv$-plane. We can write $F\left( {x,y} \right) = \left( {y + {x^2},y - {x^3}} \right)$. So, the Jacobian of $F$ is ${\rm{Jac}}\left( F \right) = \left| {\begin{array}{*{20}{c}} {\frac{{\partial u}}{{\partial x}}}&{\frac{{\partial u}}{{\partial y}}}\\ {\frac{{\partial v}}{{\partial x}}}&{\frac{{\partial v}}{{\partial y}}} \end{array}} \right| = \left| {\begin{array}{*{20}{c}} {2x}&1\\ { - 3{x^2}}&1 \end{array}} \right| = 2x + 3{x^2}$ (b) Recall Eq. (7) in Section 16.6: (1) ${\ \ \ \ }$ ${\rm{Area}}\left( {\cal D} \right) = {\rm{Area}}\left( {G\left( {\cal R} \right)} \right) \approx \left| {{\rm{Jac}}\left( G \right)} \right|{\rm{Area}}\left( {\cal R} \right)$ 1. Using the definition of ${\cal R}$: ${\cal R} = \left\{ {\left( {u,v} \right)|8 \le u \le 9,5 \le v \le 6} \right\}$ we get ${\rm{Area}}\left( {\cal R} \right) = 1$. 2. Evaluate the Jacobian of $F$ at $P = \left( {1,7} \right)$: ${\rm{Jac}}{\left( F \right)_{P = \left( {1,7} \right)}} = 2 \times 1 + 3 \times {1^2} = 5$ Using Eq. (14) in Section 16.6: ${\rm{Jac}}\left( G \right) = {\rm{Jac}}{\left( F \right)^{ - 1}}$, ${\ \ \ \ \ }$ where $F = {G^{ - 1}}$ we get ${\rm{Jac}}{\left( G \right)_{P = \left( {1,7} \right)}} = \frac{1}{5}$. Substituting these results in equation (1) gives ${\rm{Area}}\left( {\cal D} \right) \approx \frac{1}{5} \times 1 = \frac{1}{5}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.