Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - Chapter Review Exercises - Page 909: 56

Answer

The Jacobian of the map: ${\rm{Jac}}\left( G \right) = {{\rm{e}}^{2r}}$

Work Step by Step

We have the map: $G\left( {r,s} \right) = \left( {{{\rm{e}}^r}\cosh \left( s \right),{{\rm{e}}^r}\sinh \left( s \right)} \right)$ Write $x = {{\rm{e}}^r}\cosh \left( s \right)$, $y = {{\rm{e}}^r}\sinh \left( s \right)$. So, $\frac{{\partial x}}{{\partial r}} = {{\rm{e}}^r}\cosh \left( s \right)$, ${\ \ \ \ }$ $\frac{{\partial x}}{{\partial s}} = {{\rm{e}}^r}\sinh \left( s \right)$ $\frac{{\partial y}}{{\partial r}} = {{\rm{e}}^r}\sinh \left( s \right)$, ${\ \ \ \ }$ $\frac{{\partial y}}{{\partial s}} = {{\rm{e}}^r}\cosh \left( s \right)$ Evaluate the Jacobian of $G$: ${\rm{Jac}}\left( G \right) = \left| {\begin{array}{*{20}{c}} {\frac{{\partial x}}{{\partial r}}}&{\frac{{\partial x}}{{\partial s}}}\\ {\frac{{\partial y}}{{\partial r}}}&{\frac{{\partial y}}{{\partial s}}} \end{array}} \right| = \frac{{\partial x}}{{\partial r}}\frac{{\partial y}}{{\partial s}} - \frac{{\partial x}}{{\partial s}}\frac{{\partial y}}{{\partial r}}$ ${\rm{Jac}}\left( G \right) = {{\rm{e}}^{2r}}{\cosh ^2}\left( s \right) - {{\rm{e}}^{2r}}{\sinh ^2}\left( s \right)$ $ = {{\rm{e}}^{2r}}\left( {{{\cosh }^2}\left( s \right) - {{\sinh }^2}\left( s \right)} \right)$ Recall Eq. (1) in Section 7.9: ${\cosh ^2}\left( s \right) - {\sinh ^2}\left( s \right) = 1$ So, ${\rm{Jac}}\left( G \right) = {{\rm{e}}^{2r}}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.