Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - Chapter Review Exercises - Page 910: 60

Answer

$\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} {{\rm{e}}^{3x - 2y}}{\rm{d}}x{\rm{d}}y = \frac{{14}}{{39}}\left( {{{\rm{e}}^{13}} - 1} \right)\left( {1 - {{\rm{e}}^{ - 3}}} \right)$

Work Step by Step

Step 1. Find a linear mapping: $G\left( {u,v} \right) = \left( {Au + Cv,Bu + Dv} \right)$, where $A$, $B$, $C$, $D$ are constants, such that $G$ maps a rectangle ${\cal R}$ in the $uv$-plane to the parallelogram ${\cal D}$ in the $xy$-plane as is shown in Figure 7. In the $uv$-plane, the rectangle is spanned by $\left( {1,0} \right)$ and $\left( {0,1} \right)$. So, $G\left( {1,0} \right) = \left( {A,B} \right)$ ${\ \ \ }$ and ${\ \ \ }$ $G\left( {0,1} \right) = \left( {C,D} \right)$ Referring to Figure 7, we have the vertices of the parallelogram in the $xy$-plane: $\left( {0,0} \right)$, ${\ \ }$ $\left( {5,1} \right)$, ${\ \ }$ $\left( {1,3} \right)$, ${\ \ }$ $\left( {6,4} \right)$ From Figure 7, we see that the parallelogram is spanned by the vectors $\left( {5,1} \right)$ and $\left( {1,3} \right)$. Since $G$ is linear, it maps the rectangle ${\cal R}$ spanned by $\left( {1,0} \right)$ and $\left( {0,1} \right)$ in the $uv$-plane to the parallelogram spanned by the images $G\left( {1,0} \right)$ and $G\left( {0,1} \right)$. Therefore, $G\left( {1,0} \right) = \left( {A,B} \right) = \left( {5,1} \right)$ $G\left( {0,1} \right) = \left( {C,D} \right) = \left( {1,3} \right)$ Thus, we obtain the linear mapping: $G\left( {u,v} \right) = \left( {5u + v,u + 3v} \right)$. So, the domain description of ${\cal R}$: ${\cal R} = \left\{ {\left( {u,v} \right)|0 \le u \le 1,0 \le v \le 1} \right\}$ Step 2. Evaluate the Jacobian of $G$: Using $x = 5u + v$ and $y = u + 3v$: ${\rm{Jac}}\left( G \right) = \left| {\begin{array}{*{20}{c}} {\frac{{\partial x}}{{\partial u}}}&{\frac{{\partial x}}{{\partial v}}}\\ {\frac{{\partial y}}{{\partial u}}}&{\frac{{\partial y}}{{\partial v}}} \end{array}} \right| = \left| {\begin{array}{*{20}{c}} 5&1\\ 1&3 \end{array}} \right| = 14$ We have $f\left( {x,y} \right) = {{\rm{e}}^{3x - 2y}}$. So, $f\left( {x\left( {u,v} \right),y\left( {u,v} \right)} \right) = {{\rm{e}}^{3\left( {5u + v} \right) - 2\left( {u + 3v} \right)}} = {{\rm{e}}^{13u - 3v}}$ Evaluate $f\left( {x,y} \right) = {{\rm{e}}^{3x - 2y}}$ over ${\cal D}$ using the Change of Variables Formula: $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} {{\rm{e}}^{3x - 2y}}{\rm{d}}x{\rm{d}}y = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal R}^{} {{\rm{e}}^{13u - 3v}}\left| {Jac\left( G \right)} \right|{\rm{d}}v{\rm{d}}u$ $ = 14\mathop \smallint \limits_{u = 0}^1 \mathop \smallint \limits_{v = 0}^1 {{\rm{e}}^{13u - 3v}}{\rm{d}}v{\rm{d}}u$ $ = 14\left( {\mathop \smallint \limits_{u = 0}^1 {{\rm{e}}^{13u}}{\rm{d}}u} \right)\left( {\mathop \smallint \limits_{v = 0}^1 {{\rm{e}}^{ - 3v}}{\rm{d}}v} \right)$ $ = - \frac{{14}}{{39}}\left( {{{\rm{e}}^{13u}}|_0^1} \right)\left( {{{\rm{e}}^{ - 3v}}|_0^1} \right)$ $ = - \frac{{14}}{{39}}\left( {{{\rm{e}}^{13}} - 1} \right)\left( {{{\rm{e}}^{ - 3}} - 1} \right)$ So, $\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} {{\rm{e}}^{3x - 2y}}{\rm{d}}x{\rm{d}}y = \frac{{14}}{{39}}\left( {{{\rm{e}}^{13}} - 1} \right)\left( {1 - {{\rm{e}}^{ - 3}}} \right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.