Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - Chapter Review Exercises - Page 909: 50

Answer

The coordinates of the center of mass: $\left( {0,\frac{{8{{\sin }^3}{\theta _0}}}{{15\left( {{\theta _0} - \sin {\theta _0}\cos {\theta _0}} \right)}}} \right)$.

Work Step by Step

We have the mass density $\delta \left( {x,y} \right) = {x^2}$. In polar coordinates: $\delta \left( {r\cos \theta ,r\sin \theta } \right) = {r^2}{\cos ^2}\theta $. Let ${\cal D}$ denote the region of the shaded sector in Figure 5. We see that $\theta $ varies from $\theta = \frac{\pi }{2} - {\theta _0}$ to $\theta = \frac{\pi }{2} + {\theta _0}$. Thus, the description of the region ${\cal D}$ in polar coordinates: ${\cal D} = \left\{ {\left( {r,\theta } \right)|0 \le r \le 1,\frac{\pi }{2} - {\theta _0} \le \theta \le \frac{\pi }{2} + {\theta _0}} \right\}$ Evaluate the mass of ${\cal D}$: $M = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} \delta \left( {x,y} \right){\rm{d}}A = \mathop \smallint \limits_{\theta = \frac{\pi }{2} - {\theta _0}}^{\frac{\pi }{2} + {\theta _0}} \mathop \smallint \limits_{r = 0}^1 {r^3}{\cos ^2}\theta {\rm{d}}r{\rm{d}}\theta $ $ = \frac{1}{4}\mathop \smallint \limits_{\theta = \frac{\pi }{2} - {\theta _0}}^{\frac{\pi }{2} + {\theta _0}} \left( {{r^4}|_0^1} \right){\cos ^2}\theta {\rm{d}}\theta $ $ = \frac{1}{4}\mathop \smallint \limits_{\theta = \frac{\pi }{2} - {\theta _0}}^{\frac{\pi }{2} + {\theta _0}} {\cos ^2}\theta {\rm{d}}\theta $ Using the Double-angle formulas in Section 1.4: ${\cos ^2}x = \frac{1}{2}\left( {1 + \cos 2x} \right)$ we get $M = \frac{1}{8}\mathop \smallint \limits_{\theta = \frac{\pi }{2} - {\theta _0}}^{\frac{\pi }{2} + {\theta _0}} \left( {1 + \cos 2\theta } \right){\rm{d}}\theta $ $ = \frac{1}{8}\left( {\theta + \frac{1}{2}\sin 2\theta } \right)|_{\frac{\pi }{2} - {\theta _0}}^{\frac{\pi }{2} + {\theta _0}}$ $ = \frac{1}{8}\left( {\frac{\pi }{2} + {\theta _0} + \frac{1}{2}\sin \left( {\pi + 2{\theta _0}} \right) - \frac{\pi }{2} + {\theta _0} - \frac{1}{2}\sin \left( {\pi - 2{\theta _0}} \right)} \right)$ $ = \frac{1}{8}\left( {2{\theta _0} - \frac{1}{2}\sin 2{\theta _0} - \frac{1}{2}\sin 2{\theta _0}} \right)$ $ = \frac{1}{8}\left( {2{\theta _0} - \sin 2{\theta _0}} \right)$ So, $M = \frac{1}{4}\left( {{\theta _0} - \sin {\theta _0}\cos {\theta _0}} \right)$. Evaluate ${x_{CM}}$: ${x_{CM}} = \frac{1}{M}\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} x\delta \left( {x,y} \right){\rm{d}}A$ Since ${\cal D}$ is symmetric with respect to the $y$-axis, and $x\delta \left( {x,y} \right) = {x^3}$ is an odd function, we have ${x_{CM}} = 0$. However, we verify this by direct calculation: ${x_{CM}} = \frac{4}{{{\theta _0} - \sin {\theta _0}\cos {\theta _0}}}\mathop \smallint \limits_{\theta = \frac{\pi }{2} - {\theta _0}}^{\frac{\pi }{2} + {\theta _0}} \mathop \smallint \limits_{r = 0}^1 {r^4}{\cos ^3}\theta {\rm{d}}r{\rm{d}}\theta $ $ = \frac{4}{{5\left( {{\theta _0} - \sin {\theta _0}\cos {\theta _0}} \right)}}\mathop \smallint \limits_{\theta = \frac{\pi }{2} - {\theta _0}}^{\frac{\pi }{2} + {\theta _0}} \left( {{r^5}|_0^1} \right){\cos ^3}\theta {\rm{d}}\theta $ $ = \frac{4}{{5\left( {{\theta _0} - \sin {\theta _0}\cos {\theta _0}} \right)}}\mathop \smallint \limits_{\theta = \frac{\pi }{2} - {\theta _0}}^{\frac{\pi }{2} + {\theta _0}} {\cos ^3}\theta {\rm{d}}\theta $ Using Eq. (6) of the Table of Trigonometric Integrals in Section 8.2: $\smallint {\cos ^{n - 3}}{\rm{d}}x = \frac{{{{\cos }^{n - 1}}x\sin x}}{n} + \frac{{n - 1}}{n}\smallint {\cos ^{n - 2}}x{\rm{d}}x$ we get $\mathop \smallint \limits_{\theta = \frac{\pi }{2} - {\theta _0}}^{\frac{\pi }{2} + {\theta _0}} {\cos ^3}\theta = \frac{{{{\cos }^2}x\sin x}}{3}|_{\frac{\pi }{2} - {\theta _0}}^{\frac{\pi }{2} + {\theta _0}} + \frac{2}{3}\mathop \smallint \limits_{\theta = \frac{\pi }{2} - {\theta _0}}^{\frac{\pi }{2} + {\theta _0}} \cos \theta $ $ = \frac{{{{\sin }^2}{\theta _0}\cos {\theta _0}}}{3} - \frac{{{{\sin }^2}{\theta _0}\cos {\theta _0}}}{3} + \sin \theta |_{\frac{\pi }{2} - {\theta _0}}^{\frac{\pi }{2} + {\theta _0}}$ $ = \cos {\theta _0} - \cos {\theta _0} = 0$ So, ${x_{CM}} = 0$. Evaluate ${y_{CM}}$: ${y_{CM}} = \frac{1}{M}\mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal D}^{} y\delta \left( {x,y} \right){\rm{d}}A$ $ = \frac{4}{{{\theta _0} - \sin {\theta _0}\cos {\theta _0}}}\mathop \smallint \limits_{\theta = \frac{\pi }{2} - {\theta _0}}^{\frac{\pi }{2} + {\theta _0}} \mathop \smallint \limits_{r = 0}^1 {r^4}{\cos ^2}\theta \sin \theta {\rm{d}}r{\rm{d}}\theta $ $ = \frac{4}{{5\left( {{\theta _0} - \sin {\theta _0}\cos {\theta _0}} \right)}}\mathop \smallint \limits_{\theta = \frac{\pi }{2} - {\theta _0}}^{\frac{\pi }{2} + {\theta _0}} \left( {{r^5}|_0^1} \right){\cos ^2}\theta \sin \theta {\rm{d}}\theta $ (1) ${\ \ \ \ \ }$ ${y_{CM}} = \frac{4}{{5\left( {{\theta _0} - \sin {\theta _0}\cos {\theta _0}} \right)}}\mathop \smallint \limits_{\theta = \frac{\pi }{2} - {\theta _0}}^{\frac{\pi }{2} + {\theta _0}} {\cos ^2}\theta \sin \theta {\rm{d}}\theta $ Consider the integral on the right-hand side: $\mathop \smallint \limits_{\theta = \frac{\pi }{2} - {\theta _0}}^{\frac{\pi }{2} + {\theta _0}} {\cos ^2}\theta \sin \theta {\rm{d}}\theta $. Write $u = \cos \theta $. So, $du = - \sin \theta d\theta $. Thus, $\mathop \smallint \limits_{\theta = \frac{\pi }{2} - {\theta _0}}^{\frac{\pi }{2} + {\theta _0}} {\cos ^2}\theta \sin \theta {\rm{d}}\theta = - \mathop \smallint \limits_{u = \sin {\theta _0}}^{ - \sin {\theta _0}} {u^2}{\rm{d}}u$ $ = - \frac{1}{3}\left( {{u^3}|_{\sin {\theta _0}}^{ - \sin {\theta _0}}} \right) = - \frac{1}{3}\left( { - {{\sin }^3}{\theta _0} - {{\sin }^3}{\theta _0}} \right)$ $ = \frac{2}{3}{\sin ^3}{\theta _0}$ So, $\mathop \smallint \limits_{\theta = \frac{\pi }{2} - {\theta _0}}^{\frac{\pi }{2} + {\theta _0}} {\cos ^2}\theta \sin \theta {\rm{d}}\theta = \frac{2}{3}{\sin ^3}{\theta _0}$. Substituting the result back in equation (1) gives: ${y_{CM}} = \frac{4}{{5\left( {{\theta _0} - \sin {\theta _0}\cos {\theta _0}} \right)}}\left( {\frac{2}{3}{{\sin }^3}{\theta _0}} \right) = \frac{{8{{\sin }^3}{\theta _0}}}{{15\left( {{\theta _0} - \sin {\theta _0}\cos {\theta _0}} \right)}}$ So, the coordinates of the center of mass: $\left( {0,\frac{{8{{\sin }^3}{\theta _0}}}{{15\left( {{\theta _0} - \sin {\theta _0}\cos {\theta _0}} \right)}}} \right)$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.