Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 16 - Multiple Integration - Chapter Review Exercises - Page 909: 42

Answer

The mass of ${\cal W}$ is $\frac{{192}}{5}$.

Work Step by Step

We have the mass density of $\rho \left( {x,y,z} \right) = {z^2}$ and the region ${\cal W}$ defined by a portion of the half-cylinder ${x^2} + {y^2} \le 4$, $x \ge 0$ such that $0 \le z \le 3y$. The inequality $0 \le z \le 3y$ implies that $y \ge 0$. Thus, ${\cal W}$ is in the first quadrant. Thus, the description of ${\cal W}$ in cylindrical coordinates: ${\cal W} = \left\{ {\left( {r,\theta ,z} \right)|0 \le r \le 2,0 \le \theta \le \frac{\pi }{2},0 \le z \le 3r\sin \theta } \right\}$ In cylindrical coordinates: $\rho \left( {r\cos \theta ,r\sin \theta ,z} \right) = {z^2}$. Compute the mass: mass $ = \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{}^{} \mathop \smallint \limits_{\cal W}^{} \rho \left( {x,y,z} \right){\rm{d}}V$ $ = \mathop \smallint \limits_{\theta = 0}^{\pi /2} \mathop \smallint \limits_{r = 0}^2 \mathop \smallint \limits_{z = 0}^{3r\sin \theta } {z^2}r{\rm{d}}z{\rm{d}}r{\rm{d}}\theta $ $ = \frac{1}{3}\mathop \smallint \limits_{\theta = 0}^{\pi /2} \mathop \smallint \limits_{r = 0}^2 \left( {{z^3}|_0^{3r\sin \theta }} \right)r{\rm{d}}r{\rm{d}}\theta $ $ = \frac{1}{3}\mathop \smallint \limits_{\theta = 0}^{\pi /2} \mathop \smallint \limits_{r = 0}^2 \left( {27{r^3}{{\sin }^3}\theta } \right)r{\rm{d}}r{\rm{d}}\theta $ $ = 9\left( {\mathop \smallint \limits_{\theta = 0}^{\pi /2} {{\sin }^3}\theta {\rm{d}}\theta } \right)\left( {\mathop \smallint \limits_{r = 0}^2 {r^4}{\rm{d}}r} \right)$ Using Eq. (5) of the Table of Trigonometric Integrals in Section 8.2: $\smallint {\sin ^n}x{\rm{d}}x = - \frac{{{{\sin }^{n - 1}}x\cos x}}{n} + \frac{{n - 1}}{n}\smallint {\sin ^{n - 2}}x{\rm{d}}x$ we get mass $ = 9\left( { - \frac{{{{\sin }^2}\theta \cos \theta }}{3}|_0^{\pi /2} + \frac{2}{3}\mathop \smallint \limits_{\theta = 0}^{\pi /2} \sin \theta {\rm{d}}\theta } \right)\left( {\frac{1}{5}{r^5}|_0^2} \right)$ $ = 9\left( { - \frac{2}{3}\cos \theta |_0^{\pi /2}} \right)\left( {\frac{{32}}{5}} \right)$ $ = 9\left( {\frac{2}{3}} \right)\left( {\frac{{32}}{5}} \right) = \frac{{192}}{5}$ So, the mass of ${\cal W}$ is $\frac{{192}}{5}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.